Spek, A. L. (1990). Acta Cryst. A46, C-34.
Straub, A., Goehrt, A. \& Liborius, B. (1997). Bioorg. Med. Chem. Lett. 7, 2519-2522.

Acta Cryst. (1999). C55, 599-601

Methyl 4 β-bromo-7 α-cathyloxy-3-oxo-5 β cholanoate

Héctor Novoa de Armas, ${ }^{a} \dagger$ Norbert M. Blaton, ${ }^{b}$ Oswald M. Peeters, ${ }^{b}$ Camiel J. De Ranter, ${ }^{b}$ Ramón Pomés Hernández, ${ }^{c}$ Francisco Coll Manchado ${ }^{d}$ and Roxana Pérez Gil ${ }^{d}$
${ }^{a}$ Centro de Química Farmacéutica, Departamento de Análisis, Apartado 16042, La Habana, Cuba ${ }^{\text {b }}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, 'Centro Nacional de Investigaciones Científicas, Division de Quimica, Apartado 6990, La Habana, Cuba, and ${ }^{d}$ Laboratorio de Productos Naturales, Facultad de Química, Universidad de La Habana, Apartado 10400, La Habana, Cuba. E-mail: hector.novoa@farm.kuleuven.ac.be
(Received 9 November 1998; accepled 3 December 1998)

Abstract

In the title compound, methyl 4β-bromo- 7α-ethoxy-carbonyloxy-3-oxo- 5β-cholanoate, $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{BrO}_{6}$, the $\mathrm{Br}-\mathrm{C} 4$ bond is oriented equatorially and (-)-antiperiplanar with respect to the $\mathrm{C} 5-\mathrm{C} 10$ bond. The sixmembered rings (A, B and C) have the usual chair conformations, while the five-membered ring (D) adopts a distorted $13 \beta, 14 \alpha$-half-chair conformation. The A / B ring junction is $c i s$, and the B / C and C / D ring junctions are both trans.

\section*{Comment}

Reduction of bromoketones and elimination reactions involving the halohydrines obtained allows the introduction of double bonds in specific positions of a molecule (Cristol \& Rademacher, 1959). This procedure has been used to obtain analogues of brassinosteroids with a 3,4 -diol moiety in the A ring from $3 \alpha, 7 \alpha$-dihydroxy- 5β cholanoic acid (chenodeoxycholic acid) (data not published). We report here the crystal structure of methyl 4β-bromine-7 α-cathyloxy-3-oxo- 5β-cholanoate, (I), the

^[\dagger Present address: Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium.]

starting material used in the synthesis of analogues of brassinosteroids.

(I)

The absolute configuration, determined from the refinement of the Flack (1983) parameter in the X-ray analysis, confirmed that predicted beforehand from the synthesis route. The $\mathrm{Br}-\mathrm{C} 4$ bond is oriented equatorially and (-)-antiperiplanar with respect to the C5C10 bond. The presence of the Br atom does not disturb the chair conformation in ring A of the steroidal nucleus. Ring A has a symmetrical chair conformation, with all asymmetry parameters below $8.8(5)^{\circ}$ (Duax et al., 1976). Rotational symmetry is dominant; a pseudoC_{2} axis intercepts the $\mathrm{C} 1-\mathrm{C} 2$ bond [asymmetry parameters: $\Delta C_{2}(\mathrm{Cl}-\mathrm{C} 2)=2.5(5), \Delta C_{S}(\mathrm{C} 1)=3.2(4)$ and $\left.\Delta C_{S}(\mathrm{C} 3)=8.0(4)^{\circ}\right]$. The modulus of the ring A torsion angles is in the range $46.59(5)-57.76(6)^{\circ}$. Rings B and C have the expected chair conformations (Pfeiffer et al., 1985). The five-membered ring (D) adopts a distorted $13 \beta, 14 \alpha$-half-chair conformation (Altona et al., 1968). The A / B ring junction is cis, and the B / C and C / D ring junctions are both trans. The packing of the molecules is assumed to be dictated by van der Waals interactions, and by intramolecular and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Taylor \& Kennard, 1982).

Fig. 1. Plot showing the atomic numbering scheme of the title compound. Displacement ellipsoids are drawn at the 50% probability level for non- H atoms and H atoms have been omitted for clarity.

Experimental

The title compound was synthesized from methylchenodeoxycholic acid by cathylation, selective deprotection, oxidation and bromination procedures. The dicathylate was obtained by reaction of methyl chenodeoxycholanate with ethyl chloroformate, followed by selective deprotection with potassium carbonate and methanol to afford 3α-hydroxy- 7α-cathyloxy5β-cholanoic acid. Oxidation of the monocathylate with Jones' reagent yielded the ketone, which was brominated with bromine and acetic acid to afford 4β-bromo- 7α-cathyl-oxy-3-oxo- 5β-cholanoic acid. The bromoketone compound was purified by column chromatography and crystals were obtained by slow evaporation of an n-hexane/ethyl acetate (1:1) solution.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{BrO}_{6}$
$M_{r}=555.55$
Orthorhombic
$P 2,2,2$ 1
$a=7.7585$ (5) \AA
$b=15.606(1) \AA$
$c=22.8759(9) \AA$
$V=2769.8(3) \AA^{3}$
$Z=4$
$D_{x}=1.3322 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ four-circle diffractometer
$2 \theta / \omega$ scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.373, T_{\text {max }}=0.721$
3609 measured reflections
3092 independent reflections (plus 306 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R(F)=0.044$
$w R\left(F^{2}\right)=0.138$
$S=1.071$
3398 reflections
320 parameters
H atoms constrained
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0727 P)^{2}\right.$
$+1.1796 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.304 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {max }}=0.304 \mathrm{\rho}_{\text {min }}=-0.344 \mathrm{e}^{-3}$
Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Br}-\mathrm{C} 4$	$1.946(5)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.473(6)$
$\mathrm{O}-\mathrm{C} 3$	$1.212(6)$	$\mathrm{O} 4-\mathrm{C} 26$	$1.325(7)$
$\mathrm{O} 2-\mathrm{C} 24$	$1.181(7)$	$\mathrm{O} 5-\mathrm{C} 26$	$1.186(7)$
$\mathrm{O} 3-\mathrm{C} 24$	$1.311(8)$	$\mathrm{O} 6-\mathrm{C} 26$	$1.334(8)$
$\mathrm{O} 3-\mathrm{C} 25$	$1.433(6)$	$\mathrm{O}-\mathrm{C} 27$	$1.475(11)$

$\mathrm{C} 24-\mathrm{O} 3-\mathrm{C} 25$	$116.8(4)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 6$	$109.0(4)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{C} 26$	$115.8(4)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 8$	$106.2(4)$
$\mathrm{C} 26-\mathrm{O} 6-\mathrm{C} 27$	$114.7(6)$	$\mathrm{O} 2-\mathrm{C} 24-\mathrm{O} 3$	$123.3(5)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 10$	$115.5(4)$	$\mathrm{O} 2-\mathrm{C} 24-\mathrm{C} 23$	$125.6(6)$
$\mathrm{OI}-\mathrm{C} 3-\mathrm{C} 2$	$122.1(6)$	$\mathrm{O} 3-\mathrm{C} 24-\mathrm{C} 23$	$111.1(5)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$123.3(5)$	$\mathrm{O} 4-\mathrm{C} 26-\mathrm{O} 5$	$127.7(6)$
$\mathrm{Br}-\mathrm{C} 4-\mathrm{C} 3$	$110.2(3)$	$\mathrm{O} 4-\mathrm{C} 26-\mathrm{O} 6$	$105.7(5)$
$\mathrm{Br}-\mathrm{C} 4-\mathrm{C} 5$	$111.1(3)$	$\mathrm{O} 5-\mathrm{C} 26-\mathrm{O} 6$	$126.6(6)$

Table 2. Hydrogen-bonding geometry ($\left(\mathrm{A}^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H. . A	D. . A	D-H \cdot A
C2- $\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{OS}^{\text {1 }}$	0.97	2.51	3.383 (7)	150
C4-H4..OO4	0.98	2.30	3.002 (6)	128
C6-H6A. ${ }^{\text {Br }}$	0.97	2.74	3.285 (5)	116
C17- $\mathrm{H}_{17} \mathrm{CO} \mathrm{Ol}^{\prime \prime}$	0.98	2.45	3.382 (6)	158
$\mathrm{C} 23-\mathrm{H} 23 \mathrm{~A} \cdots \mathrm{Ol}^{11}$	0.97	2.60	3.493 (7)	153
C25-H25A . . O6"	0.96	2.50	3.253 (9)	135
C27-H27B.. O5	0.97	2.24	2.686 (11)	107

Symmetry codes:
(i) $1+$
(ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$

The title structure was solved by direct methods and Fourier synthesis. Non-H atoms were refined anisotropically by fullmatrix least-squares techniques. H atoms were calculated geometrically and included in the refinement, but were restrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed at $1.3 U_{\text {eq }}$ of the parent atoms. The C28 atom of the terminal methyl group was located from the ΔF map and was found to be disordered; it was placed in two positions, each with 50% occupancy. The H atoms of the disordered C28 atom were not located.

Data collection: XSCANS (Siemens, 1996). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: DIAMOND (Bergerhoff, 1996). Software used to prepare material for publication: PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

This work was supported in part by the project 'Development of human resources and modern techniques for drug analysis in Cuba' (3M980032) from the Belgian Government (ABOS-AGCD) and by K. U. Leuven.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1393). Services for accessing these data are described at the back of the journal.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Bergerhoff, G. (1996). DIAMOND. Visual Cṇistal Structure Information System. University of Bonn, Germany.
Cristol, S. J. \& Rademacher, L. E. (1959). J. Am. Chem. Soc. 81, 1600.

Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistř: Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 271-283. New York: John Wiley.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991). PARSTCIF. Program for Creating a CIF from the Output of PARST. University of Parma, Italy.
Nardelli, M. (1995). J. Appl. Cnist. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. \& Adam, G. (1985). Z. Chem. 25, 183-184.

Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Siemens (1996). XSCANS. X-ray Single Crystal Analysis Software. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

Acta Cryst. (1999). C55, 601-603

(25R)-6 β-Acetoxy-3 β-bromo- 5α-spirostan-23-one

Héctor Novoa de Armas, ${ }^{a} \dagger$ Norbert M. Blaton, ${ }^{b}$ Oswald M. Peeters, ${ }^{b}$ Camiel J. De Ranter, ${ }^{b}$ Ramón Pomés Hernández, ${ }^{c}$ Martín A. Iglesias Arteagas, ${ }^{d}$ Roxana Pérez Gil ${ }^{d}$ and Francisco Coll Manchado ${ }^{d}$
${ }^{a}$ Centro de Química Farmacéutica, Departamento de Análisis, Apartado 16042, La Habana, Cuba, ${ }^{\text {b }}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, ${ }^{\text {c }}$ Centro Nacional de Investigaciones Científicas, Divisíon de Química, Apartado 6990, La Habana, Cuba, and ${ }^{d}$ Laboratorio de Productos Naturales, Facultad de Química, Universidad de La Habana, Apartado 10400, La Habana, Cuba. E-mail: hector.novoa@farm.kuleuven.ac.be
(Received 21 September 1998; accepted 3 December 1998)

Abstract

In the title compound [systematic name: (25R)-3 β -bromo-23-oxo- 5α-spirostan-6-yl acetate, $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{BrO}_{5}$], the $\mathrm{C} 3-\mathrm{Br}$ bond is oriented equatorially and (-)antiperiplanar with respect to the $\mathrm{C} 4-\mathrm{C} 5$ bond. The sixmembered B, C and F rings have chair conformations, as is usual in this type of compound. The five-membered D ring adopts a 14α-envelope conformation and the E ring adopts a $\mathrm{C} 22 \beta, \mathrm{O} 3 \alpha$-half-chair conformation. The $A / B, B / C$ and C / D ring junctions are trans.

Comment

In connection with our studies on the synthesis and characterization of bioactive steroids, we need, for reference purposes, the detailed molecular geometry of (25R)-

[^1]6β-acetoxy- 3β-bromo- 5α-spirostan-23-one, (I), which is being used extensively as a starting material for the synthesis of different spirostanic analogues of brasinosteroids. The title compound was obtained by treatment of an acetic acid solution of the previously reported steroid ($25 R$)- 5α-spirostan- $2 \alpha, 3 \alpha, 6 \beta$-triol triacetate (Iglesias-Arteaga et al., 1998).

(I)

The absolute configuration, determined from refinement of the Flack (1983) parameter in the X-ray analysis, confirmed that predicted beforehand from the synthesis route. The molecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1. The $\mathrm{C} 3-\mathrm{Br}$ bond is oriented equatorially and $(-)$-antiperiplanar with respect to the $\mathrm{C} 4-\mathrm{C} 5$ bond. The presence of the Br atom does not disturb the chair conformation in ring A of the steroidal nucleus. Ring A has a highly symmetrical chair conformation with all asymmetry parameters below $2.70(9)^{\circ}$ (Duax et al., 1976). Mirror symmetry is dominant, with asymmetry parameters $\Delta C_{S}(\mathrm{C} 3)=0.6(7), \Delta C_{S}(\mathrm{C} 5)=1.2(8)$ and $\Delta C_{2}(\mathrm{C} 4-\mathrm{C} 5)=2.70(9)^{\circ}$. The average of the torsion angles is $56.50(9)^{\circ}$. Rings B, C and F have chair conformations, as expected (Pfeiffer et al., 1985). Ring D has a 14α-envelope conformation (Altona et al., 1968). Ring E has a $\mathrm{C} 22 \beta, \mathrm{O} 3 \alpha$-half-chair conformation. The A / B, B / C and C / D ring junctions are trans. Bond distances and valence angles are close to expected values (Honda et al., 1996). The packing of the molecules is assumed to be dictated by van der Waals interactions and by intramolecular and intermolecular $\mathrm{C}-\mathrm{H} . \mathrm{O}$ hydrogen bonds (Taylor \& Kennard, 1982).

Fig. 1. Plot showing the atomic numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level for non- H atoms and H atoms have been omitted for clarity.

[^1]: \dagger Present address: Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium.

